Open
Close

Единичная система счисления относится к. Информатика - система счисления

После длительного функционирования или сразу же после загрузки из сети, программа mozilla firefox отказывается включаться в нормальный рабочий темп, не запускается вообще. Причин такой реакции может быть много и чтобы продуктивно устранить неисправности, стоит ближе рассмотреть их истинный характер.

Не функционирует браузер

Быстрый и многофункциональный системный элемент Mozilla устанавливается на многих мобильных и компьютерных устройствах. Отзывы о его работе практически всегда носят положительный характер, но часто пользователи сети жалуются на проблемы с запуском.

Почти всегда не открывается система после длительной службы или отказывается грузиться Яндекс и каждой проблематической ситуации такого типа есть своё объяснение. Самые распространённые неисправности из-за которых возникает такая проблематическая ситуация, стоит пересмотреть сейчас.

Причины отсутствия реакции программы

На вопрос почему не работает программа Мозила, люди не могут дать однозначного ответа, ведь не все хорошо знакомы с современными технологическими особенностями, процессами. Есть несколько возможных вариантов развития ситуаций, при которых Яндекс или Mozilla Firefox не могут запуститься на используемом приборе. Самыми распространёнными характеристиками такого уровня следует назвать:

  • отсутствие своевременного обновления расширения;
  • наличие внутри применяемого гаджета вирусов;
  • случайно произведённый процесс принудительного закрытия контентного компонента;
  • системные сбои, как в плане работы программного обеспечения, так и внутри технического устройства;
  • установленная версия Фаерфокс не имеет совместимости с конкретным ПК или гаджетом мобильного типа.


Система отказывается открываться совсем или, при отдельных случаях, запускается, а потом сразу же закрывается при входе на Яндекс или другой сайт. Часто происходят неполадки и сбои именно после повторного запуска мультимедийного прибора, длительной работы в сети, открытии нескольких браузеров вместе, программ, препятствующей нормальной функциональной деятельности других расширений.

Возможные пути решения проблемы

Если открывающийся системный элемент настолько сильно виснет, что продуктивно сотрудничать с нем совсем невозможно, не стоит пытаться его приводить в чувство, а лучше искать продуктивные методики, для разрешения такой серьёзной проблемы.

Чтобы открывать и использовать указанное системное обеспечение максимально быстро, при этом качественно, стоит попытаться выполнить следующие реанимационные действия:


Один из этих советов должен помочь открыть систему, зайти в поисковик Яндекс и пользоваться Mozilla эффективно.

Как только люди начали считать, у них появилась потребность в записи чисел. Археологи находили на стоянках первобытных людей свидетельства того, что изначально почти любое количество записывалось просто тождественным ему количеством значков: палочек, точек, черточек. Такая система называется единичной (унарной). Любое число в этой системе записывается повторением одного знака, который символизирует единицу.

Не смотря на древность этой системы она используется и по сей день, первоклассников учат считать на палочках, а для определения курса, на котором сейчас обучается курсант военного училища следует посчитать количество полосок, нашитых на его рукаве.

Унарная система - не самый удобный способ записи чисел, запись занимает много места и монотонность записи приводит к ошибкам, поэтому с течением времени начали появляться более удобные системы счисления .

Десятичная древнеегипетская система счисления

У Древних Египтян была весьма удобная система счисления, в ней были знаки обозначающие ключевые числа: 1, 10, 100 и т. д. Остальные числа записывали с помощью сложения. Обозначения некоторых чисел представлено в рисунке 1 .

Сейчас система не используется.

Римская система счисления

Эта система сохранилась без изменений до наших дней. Появилась она более чем две с половиной тысячи лет назад в Древнем Риме. В ее основе лежали знаки I (палец руки) для числа 1, V (пятерня) для числа 5, X (две руки) для числа 10. А для обозначения 100, 500 и 1000 применяли первые буквы латинских названий (centum - сто, demimille - половина тысячи, mille - тысяча). Для того чтобы записать число римляне использовали не только суммы, как египтяне, но и разность. Для этого применялось простое правило: каждый меньший знак стоящий после большего прибавляется к его значению, а стоящий перед большим знаком отнимается от его значения. Таким образом IX - обозначает 9, а XI - 11 .

Римскими цифрами пользуются по сей день, и з используют для наименования разделов, подразделов книг, веков, так же их часто пишут на часах.

Алфавитные системы счисления

К таким системам относятся: греческая, славянская, финская и другие. Здесь числа от 1 до 9, от 10 до 90 и от 100 до 900 обозначались буквами алфавита. В Древней Греции цифры обозначались первыми девятью буквами греческого алфавита. Числа от 10 до 90 - следующими девятью. И от 100 до 900 - последними девятью буквами римского алфавита. У славян числовые значения соответствовали буквам по порядку. Сначала для этого использовалась глаголица, а потом и кириллица. В России такая нумерация сохранилась до конца XVII века. Потом Петр I привез из-за границы арабскую нумерацию, которую мы используем по сей день .

Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.

Введение

Система счисления - это способ записи (представления) чисел.

Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача - их посчитать. Для этого можно - загибать пальцы, делать зарубки на камне (одно дерево - один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру - палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором - композиция камней и палочек, где слева - камни, а справа - палочки

Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, - на однородные и смешанные.

Непозиционная - самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек - то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.

Позиционная система - значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления - позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 - кол-во десяток и аналогично значению 50, а 3 - единиц и значению 3. Как видим - чем больше разряд - тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.

Однородная система - для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд - 0, 2-й - 5, 3-й - 4), а 4F5 - нет, поскольку символ F не входит в набор цифр от 0 до 9.

Смешанная система - в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример - система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

Непозиционные системы

Как только люди научились считать - возникла потребность записи чисел. В начале все было просто - зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления - единичная.
Единичная система счисления
Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами - чем больше число - тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.

Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система
В Древнем Египте использовались специальные символы (цифры) для обозначения чисел 1, 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 . Вот некоторые из них:

Почему она называется десятичной? Как писалось выше - люди стали группировать символы. В Египте - выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ - представление числа 10 в какой-то степени.

Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:

Вавилонская шестидесятеричная система
В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин - для обозначения единиц и “лежачий” - для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:

Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения - в позиционной с основанием 60. Число 92:

Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:

Теперь число 3632 следует записывать, как:

Шестидесятеричная вавилонская система - первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени - час состоит из 60 минут, а минута из 60 секунд.

Римская система
Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления - это набор стоящих подряд цифр.

Методы определения значения числа:

  1. Значение числа равно сумме значений его цифр. Например, число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2=32
  2. Если слева от большей цифры стоит меньшая, то значение равно разности между большей и меньшей цифрами. При этом, левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из «младших» может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1); число 444 в рассматриваемой системе счисления будет записано в виде CDXLIV = (D-C)+(L-X)+(V-I) = 400+40+4=444.
  3. Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.
Помимо цифирных, существуют и буквенные (алфавитные) системы счисления, вот некоторые из них:
1) Славянская
2) Греческая (ионийская)

Позиционные системы счисления

Как упоминалось выше - первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.
Десятичная система счисления
Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.

Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас - позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 503 10 .

Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.

Двоичная система счисления
Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу - сложные верёвочные сплетения и узелки.

Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра - либо 0, либо 1.

Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 101 2 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 5 10 .

Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа - 0 и 1?

Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое - единице. Для запоминания отдельного числа используется регистр - группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров - это оперативная память. Число, содержащееся в регистре - машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа - достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой - по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 101100 2 . В восьмеричной - это 101 100 = 54 8 , а в шестнадцатеричной - 0010 1100 = 2С 16 . Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.

Восьмеричная система счисления
8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.

Пример восьмеричного числа: 254. Для перевода в 10-ю систему необходимо каждый разряд исходного числа умножить на 8 n , где n - это номер разряда. Получается, что 254 8 = 2*8 2 + 5*8 1 + 4*8 0 = 128+40+4 = 172 10 .

Шестнадцатеричная система счисления
Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF - белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.

В качестве примера возьмем число 4F5 16 . Для перевода в восьмеричную систему - сначала преобразуем шестнадцатеричное число в двоичное, а затем, разбив на группы по 3 разряда, в восьмеричное. Чтобы преобразовать число в 2-е необходимо каждую цифру представить в виде 4-х разрядного двоичного числа. 4F5 16 = (100 1111 101) 2 . Но в 1 и 3 группах не достает разряда, поэтому заполним каждый ведущими нулями: 0100 1111 0101. Теперь необходимо разделить полученное число на группы по 3 цифры справа налево: 0100 1111 0101 = 010 011 110 101. Переведем каждую двоичную группу в восьмеричную систему, умножив каждый разряд на 2 n , где n - номер разряда: (0*2 2 +1*2 1 +0*2 0) (0*2 2 +1*2 1 +1*2 0) (1*2 2 +1*2 1 +0*2 0) (1*2 2 +0*2 1 +1*2 0) = 2365 8 .

Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная

Позиционные системы подразделяются на однородные и смешанные.

Однородные позиционные системы счисления
Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение - излишне.
Смешанные системы счисления
К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q - основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”

Опираясь на теорему, можно сформулировать правила перевода из P-й в Q-ю системы и наоборот:

  1. Для перевода из Q-й в P-ю, необходимо число в Q-й системе, разбить на группы по n цифр, начиная с правой цифры, и каждую группу заменить одной цифрой в P-й системе.
  2. Для перевода из P-й в Q-ю, необходимо каждую цифру числа в P-й системе перевести в Q-ю и заполнить недостающие разряды ведущими нулями, за исключением левого, так, чтобы каждое число в системе с основанием Q состояло из n цифр.
Яркий пример - перевод из двоичной системы счисления в восьмеричную. Возьмем двоичное число 10011110 2 , для перевода в восьмеричное - разобьем его справа налево на группы по 3 цифры: 010 011 110, теперь умножим каждый разряд на 2 n , где n - номер разряда, 010 011 110 = (0*2 2 +1*2 1 +0*2 0) (0*2 2 +1*2 1 +1*2 0) (1*2 2 +1*2 1 +0*2 0) = 236 8 . Получается, что 10011110 2 = 236 8 . Для однозначности изображения двоично-восьмеричного числа его разбивают на тройки: 236 8 = (10 011 110) 2-8 .

Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева

Перевод из одной системы счисления в другую

Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.
Преобразование в десятичную систему счисления
Имеется число a 1 a 2 a 3 в системе счисления с основанием b. Для перевода в 10-ю систему необходимо каждый разряд числа умножить на b n , где n - номер разряда. Таким образом, (a 1 a 2 a 3) b = (a 1 *b 2 + a 2 *b 1 + a 3 *b 0) 10 .

Пример: 101 2 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 5 10

Преобразование из десятичной системы счисления в другие
Целая часть:
  1. Последовательно делим целую часть десятичного числа на основание системы, в которую переводим, пока десятичное число не станет равно нулю.
  2. Полученные при делении остатки являются цифрами искомого числа. Число в новой системе записывают, начиная с последнего остатка.
Дробная часть:
  1. Дробную часть десятичного числа умножаем на основание системы, в которую требуется перевести. Отделяем целую часть. Продолжаем умножать дробную часть на основание новой системы, пока она не станет равной 0.
  2. Число в новой системе составляют целые части результатов умножения в порядке, соответствующем их получению.
Пример: переведем 15 10 в восьмеричную:
15\8 = 1, остаток 7
1\8 = 0, остаток 1

Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 15 10 = 17 8 .

Преобразование из двоичной в восьмеричную и шестнадцатеричную системы
Для перевода в восьмеричную - разбиваем двоичное число на группы по 3 цифры справа налево, а недостающие крайние разряды заполняем ведущими нулями. Далее преобразуем каждую группу, умножая последовательно разряды на 2 n , где n - номер разряда.

В качестве примера возьмем число 1001 2: 1001 2 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0) (0*2 2 + 0*2 1 + 1*2 0) = (0+0+1) (0+0+1) = 11 8

Для перевода в шестнадцатеричную - разбиваем двоичное число на группы по 4 цифры справа налево, затем - аналогично преобразованию из 2-й в 8-ю.

Преобразование из восьмеричной и шестнадцатеричной систем в двоичную
Перевод из восьмеричной в двоичную - преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.

Для примера рассмотрим число 45 8: 45 = (100) (101) = 100101 2

Перевод из 16-ой в 2-ю - преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.

Преобразование дробной части любой системы счисления в десятичную

Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.

Пример: 101,011 2 = (1*2 2 + 0*2 1 + 1*2 0), (0*2 -1 + 1*2 -2 + 1*2 -3) = (5), (0 + 0,25 + 0,125) = 5,375 10

Преобразование дробной части двоичной системы в 8- и 16-ую
Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.

Пример: 1001,01 2 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0) (0*2 2 + 0*2 1 + 1*2 0), (0*2 2 + 1*2 1 + 0*2 0) = (0+0+1) (0+0+1), (0+2+0) = 11,2 8

Преобразование дробной части десятичной системы в любую другую
Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.

Для примера переведем 10,625 10 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,625 10 = (1010), (101) = 1010,101 2

Возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у жителей Средней Азии.

Определения

Позиционная система счисления определяется целым числом b > 1 {\displaystyle b>1} , называемым основанием системы счисления. Система счисления с основанием b {\displaystyle b} также называется b {\displaystyle b} -ричной (в частности, двоичной , троичной , десятичной и т.п.).

x = ∑ k = 0 n − 1 a k b k {\displaystyle x=\sum _{k=0}^{n-1}a_{k}b^{k}} , где a k {\displaystyle \ a_{k}} - это целые числа, называемые цифрами , удовлетворяющие неравенству 0 ≤ a k ≤ b − 1. {\displaystyle 0\leq a_{k}\leq b-1.} x = a n − 1 a n − 2 … a 0 . {\displaystyle x=a_{n-1}a_{n-2}\dots a_{0}.}

В ненулевых числах x {\displaystyle \ x} начальные нули обычно опускаются.

Для записи чисел в системах счисления с основанием до 36 включительно в качестве цифр (знаков) используются арабские цифры (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) и, затем, буквы латинского алфавита (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z). При этом, a = 10, b = 11 и т.д., иногда x = 10.

При одновременной работе с несколькими системами счисления для их различения основание системы обычно указывается в виде нижнего индекса, который записывается в десятичной системе:

123 10 {\displaystyle 123_{10}} - это число 123 в десятичной системе счисления ; 173 8 {\displaystyle 173_{8}} - то же число в восьмеричной системе счисления ; 1111011 2 {\displaystyle 1111011_{2}} - то же число, но в двоичной системе счисления ; 0001 0010 0011 10 = 000100100011 B C D {\displaystyle 0001\ 0010\ 0011_{10}=000100100011_{BCD}} - то же число, но в десятичной системе счисления с двоичным кодированием десятичных цифр (BCD); 11120 3 N {\displaystyle 11120_{3N}} - то же число, но в несимметричной троичной системе счисления ; 1 i i i i 0 3 S = 177770 3 S = 122220 3 S = + − − − − 0 3 S {\displaystyle 1iiii0_{3S}=177770_{3S}=122220_{3S}=+----0_{3S}} - то же число, но в симметричной троичной системе счисления , знаки «i», «7», «2» и «–» обозначают «-1», знаки «1» и «+» обозначают «+1».

В некоторых специальных областях применяются особые правила указания основания. Например, в программировании шестнадцатеричная система обозначается:

  • в ассемблере и записях общего рода, не привязанных к конкретному языку, буквой h (от h exadecimal) в конце числа (синтаксис Intel);
  • в Паскале знаком «$» в начале числа;
  • в Си и многих других языках комбинацией 0x или 0X (от hex adecimal) в начале.

В некоторых диалектах языка Си по аналогии с «0x» используется префикс «0b» для обозначения двоичных чисел (обозначение «0b» не входит в стандарт ANSI C).

((… (a n − 1 ⋅ b + a n − 2) ⋅ b + a n − 3) …) ⋅ b + a 0 . {\displaystyle ((\ldots (a_{n-1}\cdot b+a_{n-2})\cdot b+a_{n-3})\ldots)\cdot b+a_{0}.}

Например:

101100 2 = = 1 · 2 5 + 0 · 2 4 + 1 · 2 3 + 1 · 2 2 + 0 · 2 1 + 0 · 2 0 = = 1 · 32 + 0 · 16 + 1 · 8 + 1 · 4 + 0 · 2 + 0 · 1 = = 32 + 8 + 4 + 0 = 44 10

Перевод из десятичной системы счисления

Целая часть
  1. Последовательно делить целую часть десятичного числа на основание, пока десятичное число не станет равно нулю.
  2. Полученные при делении остатки являются цифрами нужного числа. Число в новой системе записывают, начиная с последнего остатка.
Дробная часть
  1. Дробную часть десятичного числа умножаем на основание системы, в которую требуется перевести. Отделяем целую часть. Продолжаем умножать дробную часть на основание новой системы, пока она не станет равной 0.
  2. Число в новой системе составляют целые части результатов умножения в порядке, соответствующем их получению.
Пример

44 10 {\displaystyle 44_{10}} переведём в двоичную систему:

44 делим на 2. частное 22, остаток 0 22 делим на 2. частное 11, остаток 0 11 делим на 2. частное 5, остаток 1 5 делим на 2. частное 2, остаток 1 2 делим на 2. частное 1, остаток 0 1 делим на 2. частное 0, остаток 1

Частное равно нулю, деление закончено. Теперь записав все остатки снизу вверх получим число 101100 2 {\displaystyle 101100_{2}}

Перевод из двоичной в восьмеричную и шестнадцатеричную системы

Для этого типа операций существует упрощённый алгоритм.

Для восьмеричной - разбиваем переводимое число на количество цифр, равное степени 2 (2 возводится в ту степень, которая требуется, чтобы получить основание системы, в которую требуется перевести (2³=8), в данном случае 3, то есть триад). Преобразуем триады по таблице триад:

000 0 100 4 001 1 101 5 010 2 110 6 011 3 111 7

Для шестнадцатеричной - разбиваем переводимое число на количество цифр, равное степени 2 (2 возводится в ту степень, которая требуется, чтобы получить основание системы, в которую требуется перевести (2 4 =16), в данном случае 4, то есть тетрад). Преобразуем тетрады по таблице тетрад:

0000 0 0100 4 1000 8 1100 C 0001 1 0101 5 1001 9 1101 D 0010 2 0110 6 1010 A 1110 E 0011 3 0111 7 1011 B 1111 F

Преобразуем 101100 2 восьмеричная - 101 100 → 54 8 шестнадцатеричная - 0010 1100 → 2C 16

Перевод из восьмеричной и шестнадцатеричной систем в двоичную

Для этого типа операций существует упрощённый алгоритм-перевёртыш.

Для восьмеричной - преобразуем по таблице в триплеты

0 000 4 100 1 001 5 101 2 010 6 110 3 011 7 111

Для шестнадцатеричной - преобразуем по таблице в квартеты

0 0000 4 0100 8 1000 C 1100 1 0001 5 0101 9 1001 D 1101 2 0010 6 0110 A 1010 E 1110 3 0011 7 0111 B 1011 F 1111

Преобразуем 54 8 → 101 100 2C 16 → 0010 1100

Перевод из двоичной системы в 8- и 16-ричную

Перевод дробной части из двоичной системы счисления в системы счисления с основаниями 8 и 16 осуществляется точно также, как и для целых частей числа, за тем лишь исключением, что разбивка на октавы и тетрады идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа. Например, рассмотренное выше число 1100,011 2 будет выглядеть как 14,3 8 или C,6 16 .

Перевод из произвольной системы счисления в десятичную

Рассмотрим пример перевода двоичного числа 1100,011 2 в десятичное. Целая часть этого числа равна 12 (см. выше), а вот перевод дробной части рассмотрим подробнее:

0 , 011 = 0 ⋅ 2 − 1 + 1 ⋅ 2 − 2 + 1 ⋅ 2 − 3 = 0 + 0 , 25 + 0 , 125 = 0 , 375. {\displaystyle 0,011=0\cdot 2^{-1}+1\cdot 2^{-2}+1\cdot 2^{-3}=0+0,25+0,125=0,375.}

Итак, число 1100,011 2 = 12,375 10 .

Точно также осуществляется перевод из любой системы счисления, только вместо «2» ставится основание системы.

Для удобства перевода, целую и дробную части числа переводят отдельно, а результат потом конкатенируют.

Перевод из десятичной системы в произвольную

Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в нуль и начать умножение получившегося числа на основание той системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в нуль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль. Ниже приводится пример перевода числа 103,625 10 в двоичную систему счисления.

Переводим целую часть по правилам, описанным выше, получаем 103 10 = 1100111 2 .

0,625 умножаем на 2. Дробная часть 0,250. Целая часть 1. 0,250 умножаем на 2. Дробная часть 0,500. Целая часть 0. 0,500 умножаем на 2. Дробная часть 0,000. Целая часть 1.

Итак, сверху вниз получаем число 101 2 . Поэтому 103,625 10 = 1100111,101 2

Точно также осуществляется перевод в системы счисления с любым основанием.

Сразу нужно отметить, что этот пример специально подобран, в общем случае очень редко удаётся завершить перевод дробной части числа из десятичной системы в другие системы счисления, а потому, в подавляющем большинстве случаев, перевод можно осуществить с какой либо долей погрешности. Чем больше знаков после запятой - тем точнее приближение результата перевода к истине. В этих словах легко убедиться, если попытаться, например, перевести в двоичный код число 0,626.

Вариации и обобщения

Запись рациональных чисел

Симметричные системы счисления

Симметричные (уравновешенные, знакоразрядные) системы счисления отличаются тем, что используют цифры не из множества { 0 , 1 , … , b − 1 } {\displaystyle \{0,1,\ldots ,b-1\}} , а из множества { 0 − (b − 1 2) , 1 − (b − 1 2) , … , (b − 1) − (b − 1 2) } {\displaystyle \left\{0-\left({\tfrac {b-1}{2}}\right),1-\left({\tfrac {b-1}{2}}\right),\ldots ,(b-1)-\left({\tfrac {b-1}{2}}\right)\right\}} . Чтобы цифры были целыми, нужно, чтобы b {\displaystyle b} было нечётным. В симметричных системах счисления не требуется дополнительных обозначений для знака числа. Кроме того, вычисления в симметричных системах удобны тем, что не требуется особых правил округления - оно сводится к простому отбрасыванию лишних разрядов, что резко уменьшает систематические ошибки вычислений.

Чаще всего используется симметричная троичная система счисления с цифрами { − 1 , 0 , 1 } {\displaystyle \{-1,0,1\}} . Она применяется в троичной логике и была технически реализована в вычислительной машине «Сетунь ».

Отрицательные основания

Существуют позиционные системы с отрицательными основаниями, называемые нега-позиционными :

  • -2 - нега-двоичная система счисления
  • -3 - нега-троичная система счисления
  • -10 - нега-десятичная система счисления

Нецелочисленные основания

Иногда также рассматривают позиционные системы счисления с нецелочисленными основаниями: рациональными , иррациональными , трансцендентными .

Примерами таких систем счисления являются:

Комплексные основания

Основаниями позиционных систем счисления могут быть также комплексные числа. При этом цифры в них принимают значения из некоторого конечного множества , удовлетворяющего условиям, которые позволяют выполнять арифметические операции непосредственно с представлениями чисел в этих системах счисления.

В частности, среди позиционных систем счисления с комплексными основаниями можно выделить двоичные, в которых используются лишь две цифры 0 и 1.

Примеры

Далее будем записывать позиционную систему счисления в следующем виде ⟨ ρ , A ⟩ {\displaystyle \langle \rho ,A\rangle } , где ρ {\displaystyle \rho } - основание системы счисления, а A - множество цифр. В частности, множество A может иметь вид:

Примерами систем счисления с комплексными основаниями являются (далее j - мнимая единица):

  • ⟨ ρ = j R , B R ⟩ . {\displaystyle \langle \rho =j{\sqrt {R}},B_{R}\rangle .}
  • ⟨ ρ = 2 e ± j π / 2 , B 2 ⟩ . {\displaystyle \langle \rho ={\sqrt {2}}e^{\pm j\pi /2},B_{2}\rangle .}
  • ⟨ ρ = 2 e j π / 3 , { 0 , 1 , e 2 j π / 3 , e − 2 j π / 3 } ⟩ ; {\displaystyle \langle \rho =2e^{j\pi /3},\{0,1,e^{2j\pi /3},e^{-2j\pi /3}\}\rangle ;}
  • ⟨ ρ = R , B R ⟩ , {\displaystyle \langle \rho ={\sqrt {R}},B_{R}\rangle ,} где φ = ± arccos ⁡ (− β / 2 R) {\displaystyle \varphi =\pm \arccos {(-\beta /2{\sqrt {R}})}} , β < min { R , 2 R } {\displaystyle \beta <\min\{R,2{\sqrt {R}}\}} - целое положительное число, которое может принимать несколько значений при данном R ;
  • ⟨ ρ = − R , A R 2 ⟩ , {\displaystyle \langle \rho =-R,A_{R}^{2}\rangle ,} где множество A R 2 {\displaystyle A_{R}^{2}} состоит из комплексных чисел вида r m = α m 1 + j α m 2 {\displaystyle r_{m}=\alpha _{m}^{1}+j\alpha _{m}^{2}} , а числа α m ∈ B R . {\displaystyle \alpha _{m}\in B_{R}.} Например: ⟨ − 2 , { 0 , 1 , j , 1 + j } ⟩ ; {\displaystyle \langle -2,\{0,1,j,1+j\}\rangle ;}

Система счисления - это способ изображения чисел и соответствующие ему правила действия над числами . Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел , называются цифрами.

В непозиционных системах счисления значение цифры не зависит от положения в числе .

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа - большая, то их значения вычитаются.

Пример 2.

VI = 5 + 1 = 6; IV = 5 – 1 = 4.

Пример 3.

MCMXCVIII = 1000 + (–100 + 1000) +

+ (–10 + 100) + 5 + 1 + 1 + 1 = 1998.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции . Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая - три десятка, третья - три единицы.

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:

101101 2 , 3671 8 , 3B8F 16 .

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числаq .q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа вq -ичной системе счисления требуетсяq различных знаков (цифр), изображающих числа 0, 1, ...,q – 1. Запись числаq вq -ичной системе счисления имеет вид 10.

Развернутая форма записи числа

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Перевод десятичных чисел в другие системы счисления

Перевод целых чисел

Целое десятичное число X требуется перевести в систему с основаниемq :X = (a n a n-1 a 1 a 0) q . Нужно найти значащие цифры числа:. Представим число в развернутой форме и выполним тождественное преобразование:

Отсюда видно, что a 0 есть остаток от деления числаX на числоq . Выражение в скобках - целое частное от этого деления. Обозначим его заX 1. Выполняя аналогичные преобразования, получим:

Следовательно, a 1 есть остаток от деленияX 1 наq . Продолжая деление с остатком, будем получать последовательность цифр искомого числа. Цифраan в этой цепочке делений будет последним частным, меньшимq .

Сформулируем полученное правило: для того чтобы перевести целое десятичное число в систему счисления с другим основанием, нужно :

1) основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить по правилам десятичной арифметики;

2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4) составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число 37 10 в двоичную систему.

Для обозначения цифр в записи числа используем символику: a 5 a 4 a 3 a 2 a 1 a 0

Отсюда: 37 10 = l00l0l 2

Пример 2. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы:

Отсюда следует: 315 10 = 473 8 = 13B 16 . Напомним, что 11 10 = B 16 .

Десятичную дробь X < 1 требуется перевести в систему с основаниемq :X = (0,a –1 a –2 …a –m+1 a –m) q . Нужно найти значащие цифры числа:a –1 , a –2 , …,a –m . Представим число в развернутой форме и умножим его наq :

Отсюда видно, что a –1 есть целая часть произведенияX на числоq . Обозначим заX 1 дробную часть произведения и умножим ее наq :

Следовательно, a –2 есть целая часть произведенияX 1 на числоq . Продолжая умножения, будем получать последовательность цифр. Теперь сформулируем правило:для того чтобы перевести десятичную дробь в систему счисления с другим основанием, нужно :

1) последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

2) полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

3) составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 3. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы.

Здесь в левом столбце находится целая часть чисел, а в правом - дробная.

Отсюда: 0,1875 10 = 0,0011 2 = 0,14 8 = 0,3 16

Перевод смешанных чисел , содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Двоичные вычисления

Согласно принципу Джона фон Неймана, компьютер производит вычисления в двоичной системе счисления. В рамках базового курса достаточно ограничиться рассмотрением вычислений с целыми двоичными числами. Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной. Иначе говоря, процедуры сложения, вычитания и умножения “столбиком” и деления “уголком” в двоичной системе производятся так же, как и в десятичной.

Рассмотрим правила вычитания и деления двоичных чисел. Операция вычитания является обратной по отношению к сложению. Из приведенной выше таблицы сложения следуют правила вычитания:

0 - 0 = 0; 1 - 0 = 1; 10 - 1 = 1.

Вот пример вычитания многозначных чисел:

Полученный результат можно проверить сложением разности с вычитаемым. Должно получиться уменьшаемое число.

Деление - операция обратная умножению. В любой системе счисления делить на 0 нельзя. Результат деления на 1 равен делимому. Деление двоичного числа на 10 2 ведет к перемещению запятой на один разряд влево, подобно десятичному делению на десять. Например:

Деление на 100 смещает запятую на 2 разряда влево и т.д. В базовом курсе можно не рассматривать сложные примеры деления многозначных двоичных чисел. Хотя способные ученики могут справиться и с ними, поняв общие принципы.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде, весьма громоздко из-за большого количества цифр. Имеется в виду запись такой информации на бумаге или вывод ее на экран. Для этих целей принято использовать смешанные двоично-восьмеричную или двоично-шестнадцатеричную системы.

Существует простая связь между двоичным и шестнадцатеричным представлением числа. При переводе числа из одной системы в другую одной шестнадцатеричной цифре соответствует четырехразрядный двоичный код. Это соответствие отражено в двоично-шестнадцатеричной таблице:

Двоично-шестнадцатеричная таблица

Такая связь основана на том, что 16 = 2 4 и число различных четырехразрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтомуперевод чисел из шестнадцатеричных в двоичные и обратно производится путем формальной перекодировки по двоично-шестнадцатеричной таблице .

Вот пример перевода 32-разрядного двоичного кода в 16-ричную систему:

1011 1100 0001 0110 1011 1111 0010 1010 BC16BF2A

Если дано шестнадцатеричное представление внутренней информации, то его легко перевести в двоичный код. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного . Желательно, чтобы ученики запомнили двоично-шестнадцатеричную таблицу. Тогда действительно для них шестнадцатеричное представление станет эквивалентным двоичному.

В двоично-восьмеричной системе каждой восьмеричной цифре соответствует триада двоичных цифр. Эта система позволяет сократить двоичный код в 3 раза.